博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Elementary methods in number theory exercise 1.4.37 $1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n...
阅读量:6147 次
发布时间:2019-06-21

本文共 2387 字,大约阅读时间需要 7 分钟。

For $n\geq 2$,the rational number

\begin{equation}\label{eq:343242}
1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}
\end{equation}is not an integer.

First let's look at an example:

\begin{align*}

1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}&=1+\frac{1}{2^1}+\frac{1}{3^1}+\frac{1}{2^2}+\frac{1}{5}+\frac{1}{2\times
3}=\frac{2^43^25+2^33^25+2^43\times 5+2^23^25+2^43^2+2^33\times 5}{2^43^25}
\end{align*}

In this example,we find that one term of the numerator is $2^43^2$,there is no $5$ in this term,and every other term in numerator has 5,in denominator there is also a 5.So $$1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}$$ is not an integer(Why?)

Now we prove the theorem formally.

 

Proof:Let $p_1<p_2<p_3<\cdots<p_k$,$p_1,p_2,\cdots,p_k$ are all the primes which are not larger than $n$.For $2\leq t\leq n$,the standard factorization of $t$ is

\begin{equation}
p_1^{\alpha_{1t}}p_2^{\alpha_{2t}}\cdots p_k^{\alpha_{kt}}
\end{equation}
where $\alpha_{1t},\alpha_{2t},\cdots,\alpha_{kt}\geq 0$.Let's turn \ref{eq:343242} into
\begin{equation}
\label{eq:824}
\sum_{i=1}^n\frac{\frac{1\times 2\times\cdots\times n}{i}}{n!}
\end{equation}
The standard factorization of $n!$ is
\begin{equation}
p_1^{l_1}p_2^{l_2}\cdots p_k^{l_k}
\end{equation}
It is easy to verify that $\forall i< p_k$,the standard factorization of
\begin{equation}
\frac{1\times 2\times \cdots \times n}{i}
\end{equation}is
\begin{equation}
\Delta_1\Delta_2\cdots p_k^{l_k}
\end{equation}(Why?)
When $n\geq i>p_k$,suppose the standard factorization of $i$ is
\begin{equation}
p_1^{h_1}p_2^{h_2}\cdots p_k^{h_k}
\end{equation}
Then it can be verified that $h_k=0$(I have to say this is not a easy thing to do ,because in order to prove this,one should use the
following lemma:

lemma:If $p$ is a prime,then there must exists a prime $q$ such that $p<q<2p$.

I believe this lemma is true,but at present I don't know how to prove it),so the standard factorization of

\begin{equation}

\frac{1\times 2\times\cdots \times n}{i}
\end{equation}is
\begin{equation}
\Delta'_1\Delta'_2\cdots p_k^{l_k}
\end{equation}

 

The standard factorization of

\begin{equation}
\frac{1\times 2\times\cdots\times n }{p_k}
\end{equation}is
\begin{equation}
\Delta_1''\Delta_2''\cdots p_k^{l_k-1}
\end{equation}
So \ref{eq:824} is not an integer(Why?)

转载于:https://www.cnblogs.com/yeluqing/archive/2012/12/01/3827608.html

你可能感兴趣的文章
关于exp/imp的总结学习
查看>>
MyBatis 向Sql语句中动态传参数&#183;动态SQL拼接
查看>>
java性能优化方案——使用entrySet()
查看>>
[20150904]exp slow.txt
查看>>
“重定向次数过多”或者“Too many automatic redirections were attempted”的错误:
查看>>
js 时间戳转为日期格式
查看>>
WordPress with LEMP on Alibaba Cloud – Part 3 Configuring a Domain and Let's Encrypt SSL
查看>>
Maven 版 JPA 最佳实践(转)
查看>>
Swagger简介
查看>>
【元气云妹】短信服务
查看>>
linux命令之uptime
查看>>
Kafka源码分析之Sender
查看>>
MySQL master-slave主从复制环境搭建初试
查看>>
Intellij idea断点 Debugger slow: Method breakpoints my dramatically slow down debugging
查看>>
《微信公众平台开发》图书介绍
查看>>
leetcode 155 Min Stack
查看>>
Jedox Cloud安全可升级自助式商业情报
查看>>
性能与性价比的平衡,阿里云第二代入门级实例T5详解
查看>>
清除windows系统垃圾文件简易脚本(bat)
查看>>
【逻辑题】舅舅问题
查看>>